

Product No.: CMAU101 & CMAU505

96-well Assay for Investigating Cell Migration, Cell Invasion and 2-D Closure of Adherent Cell Lines

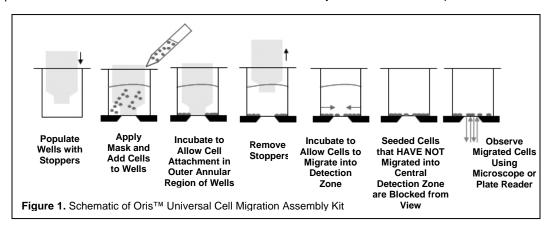
Protocol & Instructions

Patent Pending

PLATYPUS TECHNOLOGIES, LLC 5520 NOBEL DRIVE, SUITE 100 MADISON, WI 53711 TOLL FREE: (866) 296-4455 PHONE: (608) 237-1270 FAX: (608) 237-1271

WWW.PLATYPUSTECH.COM

Oris™ Universal Cell Migration Assembly Kit


I. INTRODUCTION

The Oris™ Universal Cell Migration Assembly Kit is a reproducible, sensitive, and flexible assay that can be used to monitor cell migration, cell invasion and 2-D closure. The Oris™ Universal Cell Migration Assembly Kit now gives researchers more control over designing a cell migration assay. Each Oris™ Cell Migration Assembly kit contains the Oris™ Cell Seeding Stoppers for creating a detection zone at the center of each well in a 96-well plate. Since the stoppers are not pre-inserted into the wells, researchers have two options; coat the plate with an extracellular matrix (ECM) component or use the coated plate provided to design an assay. Researchers may also apply 3-dimensional overlays in each well to watch how cells invade and respond to various compounds (chemokinesis). Each kit is supplied with a 96-well, black-clear bottom plate, an Oris™ Detection Mask, an Oris™ Stopper Tool, and Oris™ Cell Seeding Stoppers.

The Oris™ Universal Cell Migration Assembly Kit has been designed for use with adherent cell cultures. This assay has been successfully used with fibroblast (3T3-Swiss albino), fibrosarcoma (HT-1080), and endothelial (HCEC and MCF10A) cell lines.

The Oris™ Universal Cell Migration Assembly Kit offers the following benefits:

- Membrane-free, Cell Migration or Invasion no cumbersome cell culture inserts to manipulate or limit cellular movement; there is no Transwell® membrane insert to block live images of cell movement.
- Creative Assay Design coat any ECM or BME on the plate to create a 2-D or 3-D environment for cell migration, cell invasion or 2-D closure assays.
- Preserve Cell Morphology the Oris™ assay provides a more native environment since cells do not have to penetrate through a polycarbonate membrane; cells can move across a tissue culture treated surface or within a user-applied ECM.
- Real-time Monitoring changes in cell structure during movement can be monitored in real-time with a microscope, digital imaging system or fluorescence plate reader.
- Reproducible Results 2-D closure assays using the Oris™ Cell Seeding Stoppers have better reproducibility than wound healing or scratch assays.
- Versatile Detection Modes analyze cells using multiple fluorescent probes, labels or colorimetric stains in the same well.
- Flexible Assay Formats design kinetic or endpoint assays without the use of special instrumentation.

II. ORIS[™] PLATE DIMENSIONS (per well)

Otto 1 Extre Bimertolotto (por troil)	
Diameter of Well	6.5 mm
Diameter of Stopper Space (Detection Zone)	2 mm
Suggested Media Volume per Well (populated with Stoppers)	100 µl
Effective Area of Outer Annular Region (seeding region) per Well	30.03 mm ²
Effective Area of Central Detection Zone per Well	3.14 mm ²
Storage Conditions	Ambient

Important: Read Instructions Before Performing any OrisTM Assay.

III. MATERIALS PROVIDED

Product No.: CMAU101

Oris™-compatible, 96-well (black, clear bottom) Plate, 1

Oris™ Cell Seeding Stoppers, 96

Oris™ Detection Mask, 1

Oris™ Stopper Tool, 1

Product No.: CMAU505

Oris™-compatible, 96-well (black, clear bottom) Plates, 5

Oris™ Cell Seeding Stoppers, 5 x 96

Oris™ Detection Mask, 1

Oris™ Stopper Tool, 1

IV. MATERIALS REQUIRED

- · Biological Cells
- Cell Culture Medium
- Sterile PBS
- Sterile Pipette Tips and Pipette or Multi-Channel Pipette
- Trypsin or Non-Enzymatic Cell Removal Reagent or Scraper
- Inverted Microscope (optional)
- Fluorescence Microplate Reader (optional)
- Cell Labeling Fluorescent Agent (eg., CellTracker™ Green*, Calcein AM) - required if performing assay readout via plate reader. *a product of Molecular Probes/Invitrogen
- Extracellular Matrix (ECM) or Basement membrane Extract (BME) for creating a 3-D assay (optional)

V. ORIS™ UNIVERSAL CELL MIGRATION ASSEMBLY KIT PROTOCOL

The following steps should be performed in a biological hood using aseptic technique to prevent contamination.

- Under sterile conditions, populate the 96-well plate with Oris™ Cell Seeding Stoppers:
 - Vertically position the tip ends of two, 4-stopper strips into one full column of 8 wells at a time (Figure 2A).
 - Gently press down on the strip backbone to partially insert the stoppers halfway into the well (Figure 2B).
 - When both stopper strips have been partially inserted in 1 column, ensure that the position of the stoppers is vertical with respect to the well wall, making any necessary adjustments (Figure 2C).
 - Using the Oris[™] Stopper Tool, firmly press down on the strip backbone to fully insert the stoppers into each well (Figure 2D and 2E). Repeat for all remaining columns.

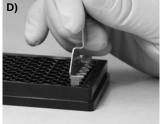
NOTE: It is extremely important to ensure that the stoppers are inserted perpendicular to the well bottom and fully engaged with the well bottom. Failure to do so will increase the CV of your data set. If you require data sets with low CVs [potential for \leq 12 %], it is recommended to use the pre-populated OrisTM Cell Migration Assay kit (#CMA1.101).

Optional: If desired, coat the bottom of the wells with an Extracellular Matrix (ECM) component (collagen, fibronectin, laminin, etc.) and allow the ECM to dry prior to populating the plate with the Oris[™] Cell Seeding Stoppers.

2. Visually inspect the underside of the populated 96-well plate to ensure that the Oris™ Cell Seeding Stoppers are firmly sealed against the bottom of the plate. To inspect the stoppers, turn the plate over and examine the stoppers for sealing (see Figure 3). If incomplete sealing is observed, return the plate to the upright position and use a sterile instrument to gently push the stopper back into the well until sealing is observed.

NOTE: the sealing of the stoppers can be most easily observed if the plate is tipped at an angle and viewed under indirect light looking for the bullseye pattern at the bottom of each well (see Figure 3).


3. Apply the Oris™ Detection Mask to the bottom of the 96-well plate.


First Time Users: In order to prevent splashing of well contents, familiarize yourself with the attachment and removal of the Detection Mask before any liquids are placed in the wells.

- Orient the chamfered corners of the mask with those of the 96-well plate, ensuring that the A1 corner of the mask (see Figure 4) is aligned with the A1 well of the plate.
- Align the holes in the attachment lugs with the bosses on the bottom of the 96-well plate.
- Gently press the mask until it is flush with the bottom of the 96-well plate.

NOTE: It may be necessary to wash the mask with ethanol to remove dust and debris since the mask is **not** sterile. The mask may be applied at any point during the assay. For kinetic assays, it is often most convenient to apply the mask at the beginning of the assay before any liquids are placed in the well. For endpoint assays, using fixed and stained cells, it is often most convenient to apply the mask just before reading assay results.

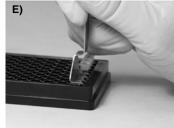


Figure 2. Stopper Insertion Process. A) Placement of Stoppers into Wells, B) Close-up of Stoppers Partially Inserted into Wells, C) Proper Placement of Stoppers, D) Pressing of Stoppers into Wells, and E) Fully Inserted Stoppers

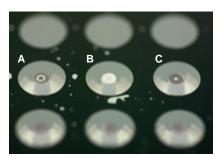


Figure 3. Stoppers that are A) Partially Sealed, B) Unsealed, & C) Completely Sealed

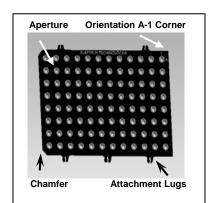
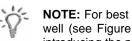
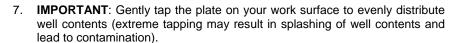
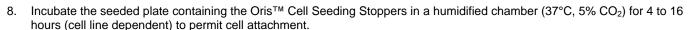



Figure 4. Features of Detection Mask


- If performing a kinetic analysis of cell migration, pre-stain cells to be seeded with a fluorescent stain now.
- Collect cells and prepare a suspension that is 10-fold greater in density than the optimal seeding concentration.


First Time Users: The optimum seeding density of cells must be determined as an integral part of the design of the cell migration assay. Please see Appendix I for a discussion of this process.

6. Pipette 100 µl of suspended cells into each test well through one of the side ports of the Cell Seeding Stopper.

NOTE: For best results, add or extract media by placing the pipette tip along the wall of the well (see Figure 5). Care should be taken not to disturb the Cell Seeding Stopper when introducing the pipette tip into the well. A gel loading tip may be useful.

- 10. Designate several 'reference' wells in which the stoppers will remain in place until results are read (t=0 pre-migration controls).
- 11. Using the Oris™ Stopper Tool, remove all other stoppers (see Figure 6).
 - Secure the 96-well plate by holding it firmly against the deck of your work space. Slide the tines of the stopper tool under the backbone of the stopper strip, keeping the underside of the tool flush with the top surface of the plate.
 - Lift the stopper tool vertically to gently remove the stopper.

NOTE: DO NOT use the stopper tool as a lever to pry the stoppers from the well (see Figure 6E), as doing so may cause displacement of seeded cells and may distort the detection zone area.

12. Remove media with a pipette and *gently* wash wells with 100 μl PBS (or media) to remove any unattached cells. Do not aspirate using an in-house vacuum.

Optional: If the plate was originally coated with an ECM (in Step 1), an overlay of ECM may be introduced in the wells to facilitate a 3-Dimensional invasion assay. Optimization of experimental conditions will be required to establish invasion conditions for a given cell line.

- 13. Add 100 µl of fresh culture media to each well.
- 14. Incubate plate in a humidified chamber (37°C, 5% CO₂) to permit cell migration. Incubation time will vary depending upon cell type and experimental design.
- 15. If performing an endpoint analysis of cell migration, apply stain.

NOTE: Oris™ Cell Seeding Stoppers are for single use only; Platypus can not guarantee the integrity of the stopper material after a second sterilization procedure.

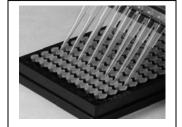


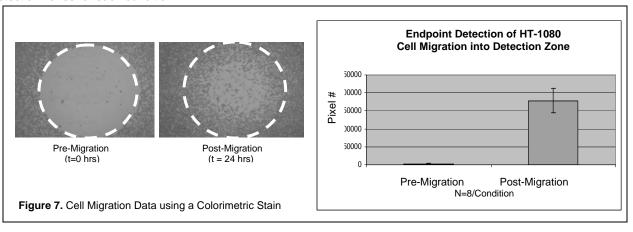
Figure 5. Media is Added with Single or Multi-Channel Pipette

Figure 6. Removal of Stoppers. Panels A, B, and C) Position

Tips, D) Lift Vertically, and E) Do NOT Pry

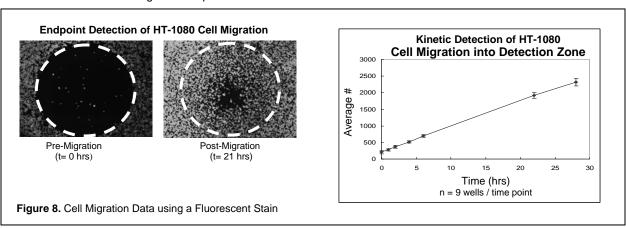
Stoppers

the Tines of the Stopper Tool between the Stopper



VI. DATA ACQUISITION

The readout of the Oris[™] Universal Cell Migration Assembly Kit can be conducted at any time, allowing the user to perform a kinetic assay or an endpoint assay. The Oris[™] Universal Cell Migration Assembly Kit is designed to be used with any commercially available stain or labeling technique. The readout can be performed by microscopic examination or by plate reader.


Microscopic Analysis

- Cell counting or image capture / analysis (using software, such as Image J freeware, available from NIH).
- Sample Data using a colorimetric stain is shown in Figure 7. Wells were seeded with 50,000 HT-1080 cells (i.e., 100 µl of 5x10⁵ cells/mL) and incubated for 4 hours. The stoppers were removed from test wells, but remained in place in the premigration reference wells until the time of the assay readout. The seeded plate was incubated in a humidified chamber for 24 hours to permit cell migration. Stoppers were removed from the reference wells and all cells were fixed and treated with Wright-Giemsa stain. Images were captured using bright field microscopy and then imported to Image J software for analysis using thresholding. The images below, captured without a detection mask in place, illustrate representative data from pre-migration (t=0 hrs) and post-migration (t=24 hrs) wells. The graph depicts the average pixel number in the detection zones for each condition.

Plate Reader Analysis

- · Setup on individual plate readers varies according to make and model. Consult your user manual for proper operation.
- The plate reader MUST be set to use the bottom probe read.
- Sample Data using a fluorescent stain is shown in Figure 8. Wells were seeded with 50,000 HT-1080 cells (i.e., 100 µl of 5x10⁵ cells/mL) and incubated for 4 hours. The stoppers were removed from test wells, but remained in place in the premigration reference wells until the time of the assay readout. Cells were fluorescently stained with CellTracker™ Green. The seeded plate was incubated in a humidified chamber for 28 hours and at various time points the fluorescence signals in the detection zones were measured using a plate reader. The images below, captured without a detection mask in place, illustrate representative data from pre-migration (t=0 hrs) and post-migration (t = 21 hrs) wells. The graph depicts a real-time analysis of cell migration that was prepared by transposing the fluorescent signal into cell numbers by employing a standard curve and a 5-Parameter Logistic-fit Equation.

Oris™ is a trademark of Platypus Technologies, LLC.

 $Cell Tracker^{\text{TM}} \ Green \ is \ a \ trademark \ of \ Invitrogen \ Corporation.$

Transwell® is a registered trademark of Corning, Inc.

VII. ORDERING INFORMATION

Product No.	Product Description	Package Size
CMAU101	Oris [™] Universal Cell Migration Assembly Kit, 1-pack: Oris [™] -compatible, 96-well plate (black, clear bottom), 1 Oris [™] Cell Seeding Stoppers, 96 Oris [™] Detection Mask, 1 Oris [™] Stopper Tool, 1	1-pack
CMAU505	Oris [™] Universal Cell Migration Assembly Kit, 5-pack: Oris [™] -compatible, 96-well plates (black, clear bottom), 5 Oris [™] Cell Seeding Stoppers, 5 x 96 Oris [™] Detection Mask, 1 Oris [™] Stopper Tool, 1	5-pack
CMAUCC1	Oris [™] Cell Migration Assembly Kit - Collagen I Coated, 1-pack: Oris [™] Collagen I Coated, 96-well plate (black, clear bottom), 1 Oris [™] Cell Seeding Stoppers, 96 Oris [™] Detection Mask, 1 Oris [™] Stopper Tool, 1	1-pack
CMAUCC5	Oris [™] Cell Migration Assembly Kit - Collagen I Coated, 5-pack: Oris [™] Collagen I Coated, 96-well plates (black, clear bottom), 5 Oris [™] Cell Seeding Stoppers, 5 x 96 Oris [™] Detection Mask, 1 Oris [™] Stopper Tool, 1	5-pack

To place an order, visit the Platypus Technologies website at: www.platypustech.com/order_main.html. For technical assistance, contact Technical Support at (866) 296-4455 or techsupport@platypustech.com.

VIII. TERMS & CONDITIONS

Certain uses of these products may be covered by U.S. Pat. No. 6,284,197, No. 7018838, No. 10/597,118, No. 11/342,413, and No. 60/836,109, licensed to PLATYPUS. Certain applications of PLATYPUS products may require licenses from other parties. Determining the existence and scope of such third party intellectual property is the responsibility of the PURCHASER. Purchase of the product provides the PURCHASER with a limited non-transferable license under any PLATYPUS patents or patent applications to use the product for internal research unless there is a written limitation to this license in the product literature. PURCHASER is responsible for carefully reviewing the product literature and respecting any limitations to this license, e.g. limitations for commercial use or research by for-profit institutions. These products may not be resold, modified for resale, used to manufacture commercial products, or used to develop commercial products without the express written approval of PLATYPUS.

These products are intended for research or laboratory use only and are not to be used for any other purposes, including, but not limited to, unauthorized commercial purposes, *in vitro* diagnostic purposes, *ex vivo* or *in vivo* therapeutic purposes, investigational use, in foods, drugs, devices or cosmetics of any kind, or for consumption by or use in connection with or administration or application to humans or animals. PLATYPUS warrants that its products shall conform substantially to the description of such goods as provided in product catalogues and literature accompanying the goods until their respective expiration dates or, if no expiration date is provided, for 6 months from the date of receipt of such goods. PLATYPUS will replace, free of charge, any product that does not conform to the specifications. This warranty limits PLATYPUS's liability only to the replacement of the nonconforming product.

THIS WARRANTY IS EXCLUSIVE AND PLATYPUS MAKES NO OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The stated express warranties, and the remedy provided for breach thereof, are in lieu of all other liability or obligations of PLATYPUS for any damages whatsoever arising out of or in connection with the delivery, use, misuse, performance, or the inability to use any of its products. IN NO EVENT SHALL PLATYPUS BE LIABLE UNDER ANY LEGAL THEORY (INCLUDING BUT NOT LIMITED TO CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT, OR WARRANTY OF ANY KIND) FOR ANY INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES (INCLUDING BUT NOT LIMITED TO LOST PROFITS) EVEN IF PLATYPUS HAD NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. Without limiting the effect of the preceding sentence, PLATYPUS's maximum liability, if any, shall not exceed the purchase price paid by PURCHASER for the product.

This warranty shall not be effective if PLATYPUS determines, in its sole discretion that PURCHASER has altered or misused the goods or has failed to use or store them in accordance with instructions furnished by PLATYPUS. PLATYPUS's sole and exclusive liability and PURCHASER's exclusive remedy with respect to goods proved to PLATYPUS's satisfaction (applying analytical methods reasonably selected by PLATYPUS) to be defective or nonconforming shall be the replacement of such goods free of charge, upon the return of such goods in accordance with our instructions, although at its discretion, PLATYPUS may provide a credit or refund. If PLATYPUS manufactures custom goods for PURCHASER based on instructions, specifications, or other directions provided by PURCHASER, PLATYPUS shall not be liable for the lack of sufficiency, fitness for purpose or quality of the goods to the extent attributable to such instructions, specifications, or other directions. PLATYPUS shall not be liable for any loss, damage or penalty as a result of any delay in or failure to manufacture, deliver or otherwise perform hereunder due to any cause beyond PLATYPUS's reasonable control.

PLATYPUS shall not be liable for injury or damages resulting from the use or misuse of any of its products.

APPENDIX I: Determining Optimal Cell Seeding Concentration

This appendix is intended to assist in determining the cell seeding density needed to achieve confluency of your cell line when using the Oris[™] Universal Cell Migration Assembly Kit. To that end, several dilutions of cell suspensions will be investigated.

NOTE: The Oris[™] Detection Mask **MUST** be removed from the 96-well plate prior to the start of the following steps:

- 1. Collect cells by trypsinization or by non-enzymatic means (such as mechanical scraping) and calculate total number of cells.
- 2. Pellet cells by centrifugation and resuspend to a final concentration of 500,000 cells/mL in culture media.
- 3. Populate test wells with Oris TM Cell Seeding Stoppers (see Steps 1 2 of the Protocol).
- 4. Seed 100 μl of cells, at 2-fold serial dilutions, in the 96-well plate starting at 50,000 cells/well (a suggested starting amount), as shown below. Keep in mind that the cell seeding area of the well with the stopper in place is ~ 0.3 cm² and based on the typical seeding density of your cells, you can infer the appropriate cell number for your first serial dilution.

Column	1	2	3
Cells / well	50,000	25,000	12,500
Number of wells	6	6	6

- 5. Incubate the plate in a humidified chamber (37°C, 5% CO₂) for 16 hours with cell seeding stoppers in place.
- 6. Following cell attachment, remove the Oris[™] Cell Seeding Stoppers from each well (see Figure 6) and *gently* wash the wells with PBS to remove non-adhered cells.
 - Secure the 96-well plate by holding it firmly against the deck of your work space. Slide the tines of the stopper tool under the backbone of the stopper strip, keeping the underside of the tool flush with the top surface of the plate.
 - Lift the stopper tool *vertically* to gently remove the stopper. Do not use the tool as a lever to pry the stoppers from the well as doing so may cause displacement of the seeded cells.
- 7. Use a microscope to visually inspect the cells and determine the cell seeding concentration that yields a confluent layer.

NOTE: If you plan to obtain the results of the Oris[™] Universal Cell Migration Assembly Kit via colorimetric or microscopic analysis, you have successfully determined the optimal cell seeding concentration for your cell line. Proceed to Step 5 of the Oris[™] Universal Cell Migration Assembly Kit Protocol. If you plan to obtain the results of the Oris[™] Universal Cell Migration Assembly Kit via a fluorescence plate reader, proceed with the following steps to optimize your plate reader settings.

8. The Oris[™] Universal Cell Migration Assembly Kit has been designed to work with all types of fluorescence stains and staining techniques. The precise method for staining cells with fluorescence stains varies according to the nature of the individual stain. Please consult the manufacturer of your fluorescence stain for specific considerations.

First Time Users: For a guide to using Calcein AM, see below:

- a) Aspirate media from wells & wash wells with PBS or media.
- Add 100 μl of Calcein AM to each well at an appropriate concentration [for a fully-seeded 96-well plate, combine 5 μl of reconstituted Calcein AM (1mg/mL in dry DMSO) with 10 mL of serum-free media or 1x PBS].
- c) Incubate plate at 37°C for 20 minutes.
- d) Remove plate from incubator.
- e) Remove staining solution. Do not aspirate using an in-house vacuum.
- f) Fix cells, or to prevent drying, add 100 µl of 1x PBS to each well.
- 9. Apply the $Oris^{TM}$ Detection Mask to the plate.
- 10. Using the bottom probe of a fluorescence plate reader, obtain the total output from each well (adjust the gain settings to achieve optimal dynamic range). To determine optimal dynamic range, consider the following factors:
 - a) The gain setting that permits detection of the lowest concentration of cells.
 - b) The gain setting that permits discrimination between cell numbers at higher densities.

NOTE: When using a plate reader to analyze the OrisTM Universal Cell Migration Assembly Kit, it is important to stain cells using a fluorescence reagent that uniformly stains cells. The use of a fluorescence probe that is affected by experimental conditions will increase variability of results and reduce correlation between fluorescence signal and cell migration. Fluorescence probes that are affected by experimental conditions could be used, however, as <u>counterstains</u> for the study of factors and processes affecting cell migration.

You have successfully determined the optimal cell seeding concentration for your cell line. Proceed to Step 6 of the OrisTM Universal Cell Migration Assembly Kit Protocol.